Can climate-related planned relocations be fair and just?

Ms Carolyn Lambert, 1 Dr Annah Piggott-McKellar, 1 Dr Carmen Elrick-Barr² and Professor Karen Vella 1

- ¹ School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, QLD
- ² School of Law and Society, University of the Sunshine Coast, QLD

A justice-based approach to climaterelated planned relocation

'Planned relocation' or 'managed retreat' are adaptation options aimed at reducing the impacts on communities, settlements and infrastructure by moving them away from increasing climate risks. But who decides when (and for who) relocation is necessary, where are they moved to, and what support do they need? This research explores these urgent questions to propose guidance on how to create programs of planned relocation that are fair and just

Problem statement

Australia's coastal communities are increasingly at risk from climate hazards such as sea-level rise, coastal inundation, storm surge, coastal erosion and saltwater intrusion. The release of Australia's National Climate Risk Assessment predicts that by 2050, 1.5 million Australians will live in high to very high-risk coastal areas, expanding to more than 3 million Australians by 2090, with more frequent flooding in low-lying areas and coastal erosion events that may occur 10 times the rate we experience today.¹

In places where protection and accommodation climate adaptation options may soon become either financially, socially or ecologically unviable, governmental decision-makers have begun to consider programs of 'managed retreat,' 'planned retreat' or 'planned relocation.'

However, while planned relocations aim to reduce risk for communities, settlements and infrastructure, the implementation of such programs come with a variety of political, legal, social, cultural, environmental³ and transitional challenges that can lead to both economic and non-economic losses for community members, and result in significant community resistance.

Research overview

This research is conducting a nation-wide policy review of how local, state and federal governmental stakeholders are currently integrating planned relocation and managed retreat into climate adaptation planning for coastal areas in Australia. It will identify and analyse the types of policy instruments that are currently being used to propose and govern planned relocations and how these vary across Australian jurisdictions.

This review will be accompanied by qualitative community case studies to better understand the justice implications of these policy instruments and how they influence the impacts and outcomes of planned relocations for affected community members.

Based on these case studies, guidance for a justice-based approach will be proposed to better inform how governmental stakeholders can work with and support communities to create planned relocation programs that:

- -are perceived to be fair and just
- -can address procedural, distributive, reparative, environmental and intergenerational justice concerns; and
- -build community consent and trust.

References

- ¹ Australian Climate Service 2025. 'Australia's National Climate Risk Assessment: An Overview.' https://www.acs.gov.au/pages/nationalclimate-risk-assessment
- ² Haasnoot, M, Lawrence, J & Magnan, AK 2021. 'Pathways to coastal retreat', Science, vol. 372, no. 6548, pp. 1287–1290, doi: 10.1126/science.abi6594.
- ³ Hino, M, Field, CB & Mach, KJ 2017, 'Managed retreat as a response to natural hazard risk', Nature Climate Change, vol. 7, no. 5, pp. 364–370, doi: 10.1038/nclimate3252

Image: Shire of Cocos (Keeling) Islands 2025. 'Home Island is so prone to flooding the plan suggested it's too costly to protect long-term', ABC News, 10 February. https://www.abc.net.au/news/2025-02-10/cocos-keeling-islands-locals-blast-plan-for-long-term-retreat/104905322

Further information

Scan the QR code to be notified of publication releases/updates associated with this research. Alternatively for more information please contact: Carolyn Lambert, PhD Researcher, Queensland University of Technology carolyn.lambert@hdr.qut.edu.au

